Coherent Radiation from Electrostatic Double Layers

Author:

Kuijpers Jan

Abstract

The radiation properties of electrostatic double layers (DLs) are of potential significance for cosmic magnetic explosions. If the emission is sufficiently intense it can serve as a diagnostic tool for particle acceleration by localized strong potential drops in current-carrying plasmas. Moreover such intense emission may form the explanation of some of the observed intense and narrow-band bursts of radiation from stellar and planetary magnetospheres. Here we study the efficiency of two coherent radiation processes: antenna radiation and a maser process. It is found that both processes can operate in the DL to produce intense and narrow-band emission. Antenna radiation occurs if the dimensions of the double layer are smaller than the wavelength of the emitted radiation. This process is therefore relevant to laboratory rather than to astrophysical plasmas. The maser on the other hand requires an amplification length inside the double layer much larger than the emitted wavelength, and can lead to observable emission in astrophysical circumstances. The growth is exponential and the rate depends only on the electric field energy density of the DL. Since the latter is externally controlled by the electric circuit it is a constant for the emission process so as to constitute a true maser. The maximum brightness temperature is of order 1025K. Masing radiation from electrostatic DLs is therefore a candidate for some of the observed intense narrow-band cosmic radio emission.

Publisher

Cambridge University Press (CUP)

Reference17 articles.

1. On the Theory of Magnetic Storms and Aurorae

2. Instabilities in Space and Laboratory Plasmas

3. Cosmic Plasma

4. Aly J.J. and Kuijpers : 1989, Astron. Astrophys., in press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3