Large Scale Solar Magnetic Fields and Their Consequences

Author:

Newkirk Gordon

Abstract

The general properties of large scale solar magnetic fields are reviewed. In order of size these are: (1) Active region, generally bipolar fields with a lifetime of about two solar rotations. These are characterized by fields of several hundred G and display differential rotation similar to that found for the photosphere. (2) UM regions which appear to be the remnants of active region fields dispersed by the action of supergranulation convection and distorted by differential rotation. These are characterized by fields of a few tens of gauss and have lifetimes of several solar rotations. (3) The polar fields which are built up over the solar cycle by the preferential migration of a given polarity towards the poles. The poloidal fields are of a few gauss in magnitude and reverse sign in about 22 yr. (4) The large scale sector fields. These appear closely related to the interplanetary sector structure, cover tens of degrees in longitude, and stretch across the equator with the same polarity. This pattern endures for periods of up to a year or more, is not distorted by differential rotation, and has a rotation period of about 27 days. The presence of these long enduring sector fields may be related to the phenomenon of active solar longitudes. The consequences of large scale fields are examined with particular emphasis on the effects displayed by the corona. Calculated magnetic field patterns in the corona are compared with the density structure of the corona with the conclusion that: (1) Small scale structures in the corona, such as rays, arches, and loops, reflect the shape of the field and appear as magnetic tubes of force preferentially filled with more coronal plasma than the background. (2) Coronal density enhancements appear over plages where the field strength and presumably the mechanical energy transport into the corona are higher than normal. (3) Coronal streamers form above the ‘neutral line’ between extended UM regions of opposite polarity. The role played by coronal magnetic fields in transient events is also discussed. Some examples are: (1) The location of Proton Flares in open, diverging configurations of the field. (2) The expulsion of ‘magnetic bottles’ into the interplanetary medium by solar flares. (3) The relation of Type IV radio bursts to the ambient field configuration. (4) The guiding of Type II burst exciters by the ambient magnetic field. (5) The magnetic connection between widely separated active regions which display correlated radio bursts.

Publisher

Cambridge University Press (CUP)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3