Giant planets seismology

Author:

Mosser B.

Abstract

The giant planets Jupiter and Saturn belong to the interesting category of possible goals for remote seismic analysis. Their first seismic observations and their analysis were attempted in 1987 and 1991 respectively, under Philippe Delache's initiative. The theoretical analysis of giant planets seismology reveals the strong signature of the dense planetary core and the tiny one of the hydrogen plasma phase transition. The asymptotic formalism makes possible to obtain pertinent information for the observation of planetary oscillations and for their analysis. Specific observational techniques were developed to detect the seismic signature of giant planets. However, the first observations (Schmider et al. 1991, Mosser et al. 1993) of Jovian oscillations remain tentative. Even if the Jovian origin of the signal is beyond doubt, the interpretation in terms of Jovian global modes remains speculative. The collision of comet SL9 onto Jupiter provided an unexpected and unique opportunity to search for oscillations excited by the cometary impacts (Mosser et al. 1996). Seismic observations of Saturn remain negative so far. Therefore, this review focuses on Jupiter. Finally, the almost 10-years long experience of seismic observations of Jupiter and Saturn has not yet provided new constraints for planetary interior models. However, guidelines for future observational projects dedicated to Jovian seismology can be drawn. The different techniques of observation are compared, and observational requirements are precisely described.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3