Abstract
Neutron stars are the longest-lived remnants of supernova explosions. As a reservoir of thermal energy remaining from the explosion and generated by frictional coupling between core and crust, as a storehouse of magnetic and rotational kinetic energy which allows the star to act as a high energy particle accelerator, and as the source of a deep gravitational potential which can generate heat from infalling matter, neutron stars remain capable of producing high energy radiation for a Hubble time. We review here the results of an extensive survey of supernova remnants and radio pulsars with the imaging instruments on board the Einstein Observatory and discuss the implications of these results for pulsar physics and for the origin and evolution of galactic neutron stars.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献