Dynamics of Micrometeoroids

Author:

Grün E.,Zook H. A.

Abstract

Recent observations of zodiacal light have established a reliable and consistent picture of the spatial distribution of interplanetary dust in the ecliptic plane. The spatial density nr varies with heliocentric distance r according to a power law nr ∝ r−ν. From Helios observations an exponent v = 1.3 is derived for the distance interval from 0.08 A.U. to 1 A.U. (Link et al. 1976). Outside the earth's orbit the Pioneer 10 and 11 results suggest a higher exponent v = 1.5 for the distance interval from 1 A.U. to 3.3. A.U. (Hanner et al., 1976). Giese and Grün (1976) showed that the results from zodiacal light observations are compatible with the micrometeoroid fluxes derived from in situ measurements and lunar crater statistics. They found that micrometeoroids in the size range from 10 μm to 100 μm radii (corresponding roughly to 10−8g to 10−5g) contribute most to the zodiacal light brightness.The orbital distribution of large interplanetary particles (10−6 g < m < 10−3g) is known from meteor observations. Sekanina and Southworth (1975) reported average orbital elements of these particles: ā ∼ 1.25 A.U., ē ∼ 0.4 and ī ∼ 20°. Orbital information on micrometeoroids (m < 10−8g) is obtained from in situ detectors on board the Pioneer 8 and 9 and Helios 1 spaceprobes and the HEOS-2 satellite. Characteristics of the different micrometeoroid experiments are given in Table 1. There is almost no time overlap in the data taking intervals of the experiments. Therefore one has to assume that there are no time variations of the meteoroid flux on the time scale of 1 to 10 years if one compares the results from the different experiments. This assumption may be violated for the smallest of the observed particles (m < 10−13g) due to strong electromagnetic interaction of these particles with the interplanetary magnetic field (Morfill and Grün 1979).

Publisher

Cambridge University Press (CUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The unresolved mystery of dust particle swarms within the magnetosphere;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-05-13

2. 3 μm Spectroscopic Survey of Near-Earth Asteroids;The Planetary Science Journal;2022-10-01

3. Causes and Consequences of the Existence of Nanodust in Interplanetary Space;Nanodust in the Solar System: Discoveries and Interpretations;2012

4. Striae atrophicae associated with transudate in the stroma.;Nishi Nihon Hifuka;1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3