Periodical Errors of Hipparcos Star Abscissae

Author:

Makarov V. V.

Abstract

An origin of both accidental and systematic errors of Hipparcos star abscissae is studied in the frames of the great circle reduction algorithm, adopted in the Hipparcos mission. Systematic variations of the basic angle within one turn of the Hipparcos satellite may be caused by periodical irregularities of the thermal flow from the sun radiation inside the satellite optical unit, enclosed in a hexagonal envelope. This would lead to periodical errors in the star abscissae at certain periods. It is shown, that an oscillation of the basic angle with a period of 60 degrees is the most dangerous one, as it is amplifyed 4.5 times. Lindegren et al. (1992) found, that the sixth harmonic in the star abscissae residuals clearly dominated with an amplitude of 0.96 milli-arcsec. If this is caused by basic angle disturbances, it follows that the amplitude of such variation may be up to 0.21 milli-arcsec. It is pointed out, that the thermal basic angle disturbances are not the only reason to expect periodical errors in star abscissae. Random abscissa errors too are inevitably of strong periodical sort, the periods of the largest harmonics being 60, 30, 18.9 (2π/19), 14.4 (2π/25) and 11.6 (2π/31) degrees for a basic angle of 58 degrees. They arise from the spatial spectrum transformation of the white noise in the primary observational data due to so-called ‘non-rigidity’ of star abscissae. The non-rigidity term acts as a factor to the photon noise errors of observations for stars of certain magnitude. A radical way to diminish both accidental and systematic periodical errors in a future Hipparcos-like astrometric satellite would be to use two different basic angles (Makarov, 1992). The basic angles of 58 and 74 degrees were considered, as they were found to be an optimal combination. In that case an improvement of precision by a factor of 2.8 can be achieved with the same Hipparcos parameters, some part of which should be explained by doubling number of observations, that is 2. It may be concluded, that using two telescopes with different basic angles for space astrometry allows to increase significantly precision for a great deal of stars under the same conditions.

Publisher

Cambridge University Press (CUP)

Reference2 articles.

1. ‘Positions and parallaxes from The Hipparcos satellite. A first attempt at a global astrometric solution’;Lindegren;Astron. and Astroph.,1992

2. Makarov V. V. (1992) ‘Accidental periodical errors of the Hipparcos star abscissae’, Pis'ma Astron. Zh. (Sov. Astron. Lett., in Russian), in press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3