The Solar Dynamo

Author:

Schmitt D.

Abstract

The generation of the solar magnetic field is generally ascribed to dynamo processes in the convection zone. The dynamo effects, differential rotation (ω–effect) and helical turbulence (α–effect) are explained, and the basic properties of the mean–field dynamo equations are discussed in close comparison with the observed solar cycle.Especially the question of the seat of the dynamo is addressed. Problems of a dynamo in the convection zone proper could be magnetic buoyancy, the nearly strict observance of the polarity rules and the migration pattern of the magnetic fields which are difficult to understand in the light of recent studies of the field structure in the convection zone and by observations of the solar acoustic oscillations. To overcome some of these problems it has been suggested that the solar dynamo operates in the thin overshoot region at the base of the convection zone instead. Some aspects of such an interface dynamo are discussed. As an alternative to the turbulent α–effect a dynamic α-effect based on magnetostrophic waves driven by a magnetic buoyancy instability of a magnetic flux layer is introduced. Model calculations for both pictures, a convection zone and an interface dynamo, are presented which use the internal rotation of the sun as deduced from helioseismology. Solutions with solar cycle behaviour are only obtained if the magnetic flux is bounded in the lower convection zone and the α–effect is concentrated near the equator.Another aspect briefly addressed is the nonlinear saturation of the magnetic field. The necessity of the dynamic nature of the dynamo processes is emphasized, and different processes, e.g. magnetic buoyancy and α-quenching, are mentioned.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3