Maternal supplementation of seaweed-derived polysaccharides improves intestinal health and immune status of suckling piglets

Author:

Heim G.,O'Doherty J. V.,O'Shea C. J.,Doyle D. N.,Egan A. M.,Thornton K.,Sweeney T.

Abstract

AbstractThe experiment investigated the effect of maternal dietary supplementation of seaweed-derived polysaccharides (SDP) (–SDPv.+SDP,n   20) from day 83 of gestation until weaning (day 28) on selected sow faeces and piglet digesta microbiota populations, piglet small-intestinal morphology, and intestinal nutrient transporter and inflammatory cytokine gene expression at birth, 48 h after birth and weaning. The effect of maternal dietary treatment on the piglet gene expression profile of inflammatory cytokines in the colon following a lipopolysaccharide (LPS) challenge was also investigated. Dietary SDP reduced sow faecal Enterobacteriaceae gene numbers at parturition. Small-intestinal morphology, nutrient transporter and cytokine gene expression in newborn piglets did not differ between maternal dietary treatments (P > 0·10). At 48 h after birth, sodium–glucose-linked transporter 1 gene expression was down-regulated in the ileum of piglets suckling the SDP-supplemented sows compared with those suckling the basal sows (P = 0·050). There was a SDP × LPS challenge interaction onIL-1andIL-6gene expression in the colon of piglets (P < 0·05). The gene expression ofIL-1andIL-6was down-regulated in the LPS-challenged colon of piglets suckling the SDP sows compared with those suckling the basal sows (P < 0·05). However, there was no difference inIL-1andIL-6gene expression in the unchallenged colon between treatment groups. At weaning, piglets suckling the SDP-supplemented sows had increased villus height in the jejunum and ileum compared with those suckling the basal-fed sows (P < 0·05). In conclusion, maternal dietary SDP supplementation enhanced the immune response of suckling piglets and improved gut morphology, making them more immune competent to deal with post-weaning adversities.

Publisher

Cambridge University Press (CUP)

Subject

Endocrinology, Diabetes and Metabolism,Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3