Rapid and selective manipulation of milk fatty acid composition in mice through the maternal diet during lactation

Author:

Oosting Annemarie,Verkade Henkjan J.,Kegler Diane,van de Heijning Bert J. M.,van der Beek Eline M.

Abstract

AbstractDietary fatty acid (FA) composition in early postnatal life can modulate growth and development and later metabolic health. Investigating programming effects of early dietary FA manipulations in rodents may be stressful and complicated due to the need of artificial feeding techniques. It is largely unknown to what extent breast milk (BM) FA composition can be directly manipulated by the diet. We exposed dams to different dietary FA compositions from postnatal day (PN) 2 until PN28. Dams with litters were randomly assigned to control (CTRL), high-medium-chain FA (MCFA), low-linoleic acid (LowLA), high-n-3 long-chain PUFA (n-3LCP) or high-n-3LCP and MCFA (n-3LCP/MCFA) diets, and diets were continued after weaning until PN28. FA compositions were determined in feeds, milk and in erythrocytes. BM MCFA content was independent from dietary MCFA intake. In contrast, the LowLA diet reduced BM LA content by about 50 % compared with the CTRL diet at PN7. BM of dams fed the n-3LCP or n-3LCP/MCFA diet contained about 6-fold more n-3 LCP than BM of the dams fed the CTRL diet at PN7. These changes in milk FA composition established after 5 d of dietary exposure did not further change over the lactation period. At PN28, the erythrocyte FA composition of the male pups correlated with analysed milk FA profiles. In conclusion, manipulation of the diet of lactating mice can strongly and rapidly affect BM FA composition, in particular of n-6 LA and n-3 LCP. Our present findings will facilitate mechanistic studies on the programming of adult metabolic health by dietary FA in the early postnatal period via direct and selective manipulation of the maternal diet.

Publisher

Cambridge University Press (CUP)

Subject

Endocrinology, Diabetes and Metabolism,Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3