Skeletal homologies of echinoderms

Author:

Mooi Rich,David Bruno

Abstract

The impressive array of disparity within the Echinodermata can be explained by the interplay of components (particularly skeletal elements) making up two major body wall regions: axial and extraxial. Axial skeleton comprises paired plate columns of the ambulacra, formed according to the Ocular Plate Rule (OPR) and in association with the water vascular system. Extraxial skeleton (subdivided into two subtypes: perforate and imperforate) is not formed according to the OPR, and new elements can be added anywhere and at any time within extraxial body wall. Recent work on early development of echinoderms reveals that axial skeleton is formed as an integral part of the rudiment, but that extraxial skeleton is derived from the non-rudiment part of the larval body. In addition to displaying such fundamental embryological and ontogenetic differences, the body wall regions have distinctive distributions and topologies that can be used to formulate criteria for their identification in any echinoderm regardless of how esoteric their morphology might be. Like the system of homologies that has long been established for vertebrates, the model of axial and extraxial skeletal types can be used to explore relationships among Recent and fossil taxa alike. Application of the model also leads to reassessment of previously published morphological characters and phylogenies.

Publisher

Cambridge University Press (CUP)

Reference77 articles.

1. Die Entwicklung der Synapta digitata und die Stammesgeschichte der Echinodermen;Semon;Jena Zeitschrift für Wissenschaftliche,1888

2. Completely Direct Development of Abatus cordatus, a Brooding Schizasterid (Echinodermata: Echinoidea) from Kerguelen, With Description of Perigastrulation, a Hypothetical New Mode of Gastrulation

3. On the development of the calcareous plates in an ophiurid larva, Ophiopluteus serratus;Murakami;Annotationes Zoologicae Japonenses,1937

4. EVOLUTION AMONG THE ECHINOIDEA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3