The Fossil Record of Plant Physiology and Development—What Leaves Can Tell Us

Author:

Boyce C. Kevin

Abstract

Plants provide unmatched opportunities to evaluate long debated evolutionary patterns in terms of the detailed biology of the fossil organisms. Leaves serve here as an example of how those advantages can be exploited. Over the history of vascular plants, three important transitions in leaf evolution—the origin of laminate leaves, the progressive loss of seed plant morphological diversity, and the evolution of more angiosperm-like leaves—also represent major shifts in leaf development and physiology. These transitions often occurred in parallel in different lineages, such as the evolution of marginal growth in each of at least four independent origins of laminate leaves during the Devonian and Carboniferous. Each also entailed dramatic reorganizations of leaf hydraulics. For example, the length of the finest distributary vein order varies from up to tens of centimeters down to hundreds of microns in successive groups of dominant seed plants. Angiosperms impose an additional trend upon these patterns with the evolution of their uniquely high vein densities. Vein density strongly influences and can provide a proxy for other physiological characteristics, such as assimilation and transpiration rates. The large increase in transpiration capacity accompanying the evolution of angiosperm leaf traits may even play an important role in feeding precipitation and thereby altering local climate.

Publisher

Cambridge University Press (CUP)

Reference96 articles.

1. Wilson J. P. and Knoll A. H. 2006. A physiologically explicit morphospace for water transport in vascular plants. Abstracts Geological Society of America Annual Meeting, Philadelphia, 64–13.

2. Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic

3. Hydraulic architecture of leaf venation in Laurus nobilis L.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3