Numerical modelling and analysis of porous surface-enhanced jet cooling using copper inverse opals in single-phase flow

Author:

Lyu Shuhang,Wu Qianying,Wei TiweiORCID

Abstract

Abstract In this study, we propose a novel cooling scheme that utilizes copper inverse opals (CIOs) for surface enhancement in a single-phase impingement jet cooling system. We perform computational fluid dynamics simulations to evaluate the cooling performance of the CIO jet coolers. Our modelling results indicate that the proposed CIO-coated cooler can significantly reduce the average temperature and improve the temperature uniformity across the entire chip surface. The average Nusselt number of the CIO-coated cooler can reach up to 2.8 times that of the flat surface jet cooler. However, the porous structure of the CIO-coated cooler increases the total pressure drop. To determine designs with high cooling performance and low energy consumption, we investigate two crucial design factors, namely the inlet velocity and the nozzle-to-CIO distance. Our analysis reveals that increasing the inlet velocity further enhances the heat transfer, but at the expense of high pressure drop. On the other hand, a larger nozzle-to-CIO distance results in a lower pressure drop but also reduces the heat transfer coefficient. The effects of nozzle-to-CIO distance are further understood by studying the flow resistance network. Furthermore, we present a reduced-order model that accurately captures the thermofluidic characteristics of the proposed design.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal Mitigation Strategy for Backside Power Delivery Network;2024 IEEE 74th Electronic Components and Technology Conference (ECTC);2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3