Annotation-free learning of a spatio-temporal manifold of the cell life cycle

Author:

delas Peñas KristoferORCID,Dmitrieva Mariia,Waithe Dominic,Rittscher Jens

Abstract

AbstractThe cell cycle is a complex biological phenomenon, which plays an important role in many cell biological processes and disease states. Machine learning is emerging to be a pivotal technique for the study of the cell cycle, resulting in a number of available tools and models for the analysis of the cell cycle. Most, however, heavily rely on expert annotations, prior knowledge of mechanisms, and imaging with several fluorescent markers to train their models. Many are also limited to processing only the spatial information in the cell images. In this work, we describe a different approach based on representation learning to construct a manifold of the cell life cycle. We trained our model such that the representations are learned without exhaustive annotations nor assumptions. Moreover, our model uses microscopy images derived from a single fluorescence channel and utilizes both the spatial and temporal information in these images. We show that even with fewer channels and self-supervision, information relevant to cell cycle analysis such as staging and estimation of cycle duration can still be extracted, which demonstrates the potential of our approach to aid future cell cycle studies and in discovery cell biology to probe and understand novel dynamic systems.

Funder

Wellcome Trust

University of the Philippines

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3