Automated modeling of protein accumulation at DNA damage sites using qFADD.py

Author:

Bowerman SamuelORCID,Mahadevan JyothiORCID,Benson Philip,Rudolph JohannesORCID,Luger KarolinORCID

Abstract

Abstract Eukaryotic cells are constantly subject to DNA damage, often with detrimental consequences for the health of the organism. Cells mitigate this DNA damage through a variety of repair pathways involving a diverse and large number of different proteins. To better understand the cellular response to DNA damage, one needs accurate measurements of the accumulation, retention, and dissipation timescales of these repair proteins. Here, we describe an automated implementation of the “quantitation of fluorescence accumulation after DNA damage” method that greatly enhances the analysis and quantitation of the widely used technique known as laser microirradiation, which is used to study the recruitment of DNA repair proteins to sites of DNA damage. This open-source implementation (“qFADD.py”) is available as a stand-alone software package that can be run on laptops or computer clusters. Our implementation includes corrections for nuclear drift, an automated grid search for the model of a best fit, and the ability to model both horizontal striping and speckle experiments. To improve statistical rigor, the grid-search algorithm also includes automated simulation of replicates. As a practical example, we present and discuss the recruitment dynamics of the early responder PARP1 to DNA damage sites.

Funder

National Cancer Institute

American Heart Association

Howard Hughes Medical Institute

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference25 articles.

1. 18. https://pypi.org/project/PySide2/.

2. 23. Verweij, R (2019) nd2reader. https://github.com/rbnvrw/nd2reader.

3. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors

4. scikit-image: image processing in Python

5. Efficient subpixel image registration algorithms

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3