Bilinear identities involving the k-plane transform and Fourier extension operators

Author:

Beltran David,Vega Luis

Abstract

AbstractWe prove certain L2(ℝn) bilinear estimates for Fourier extension operators associated to spheres and hyperboloids under the action of the k-plane transform. As the estimates are L2-based, they follow from bilinear identities: in particular, these are the analogues of a known identity for paraboloids, and may be seen as higher-dimensional versions of the classical L2(ℝ2)-bilinear identity for Fourier extension operators associated to curves in ℝ2.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference36 articles.

1. Bennett, J. and Nakamura, S. , Tomography bounds for the Fourier extension operator and applications. https://arxiv.org/abs/2001.01674

2. Maximizers for the Strichartz inequality;Foschi;J. Eur. Math. Soc. (JEMS),2007

3. A sharp bilinear restriction estimate for paraboloids

4. A sharp 𝑘-plane Strichartz inequality for the Schrödinger equation

5. Energy Scattering for Nonlinear Klein–Gordon and Schrödinger Equations in Spatial Dimensions 1 and 2

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tomographic Fourier extension identities for submanifolds of $${\mathbb {R}}^n$$;Selecta Mathematica;2024-09

2. A reverse Ozawa–Rogers estimate;Portugaliae Mathematica;2023-07-12

3. Some sharp null-form type estimates for the Klein–Gordon equation;Journal of the Mathematical Society of Japan;2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3