Hyers–Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients

Author:

Buşe Constantin,Lupulescu Vasile,O'Regan Donal

Abstract

AbstractLetqbe a positive integer and let (an) and (bn) be two given ℂ-valued andq-periodic sequences. First we prove that the linear recurrence in ℂ0.1$$x_{n + 2} = a_nx_{n + 1} + b_nx_n,\quad n\in {\open Z}_+ $$is Hyers–Ulam stable if and only if the spectrum of the monodromy matrixTq: =Aq−1· · ·A0(i.e. the set of all its eigenvalues) does not intersect the unit circle Γ = {z∈ ℂ: |z| = 1}, i.e.Tqis hyperbolic. Here (and in as follows) we let0.2$$A_n = \left( {\matrix{ 0 & 1 \cr {b_n} & {a_n} \cr } } \right)\quad n\in {\open Z}_+ .$$Secondly we prove that the linear differential equation0.3$${x}^{\prime \prime}(t) = a(t){x}^{\prime}(t) + b(t)x(t),\quad t\in {\open R},$$(wherea(t) andb(t) are ℂ-valued continuous and 1-periodic functions defined on ℝ) is Hyers–Ulam stable if and only ifP(1) is hyperbolic; hereP(t) denotes the solution of the first-order matrix 2-dimensional differential system0.4$${X}^{\prime}(t) = A(t)X(t),\quad t\in {\open R},\quad X(0) = I_2,$$whereI2is the identity matrix of order 2 and0.5$$A(t) = \left( {\matrix{ 0 & 1 \cr {b(t)} & {a(t)} \cr } } \right),\quad t\in {\open R}.$$

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Best Ulam constants for two‐dimensional nonautonomous linear differential systems;Mathematische Nachrichten;2024-07-02

2. Stability of nonautonomous systems on Fréchet spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-05-06

3. Measurable weighted shadowing for random dynamical systems on Banach spaces;Journal of Differential Equations;2024-05

4. HYERS–ULAM–RASSIAS STABILITY FOR NONAUTONOMOUS DYNAMICS;Rocky Mountain Journal of Mathematics;2024-02-01

5. Characterization of Ulam-Hyers stability of linear differential equations with periodic coefficients;Journal of Mathematical Analysis and Applications;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3