Author:
Buşe Constantin,Lupulescu Vasile,O'Regan Donal
Abstract
AbstractLetqbe a positive integer and let (an) and (bn) be two given ℂ-valued andq-periodic sequences. First we prove that the linear recurrence in ℂ0.1$$x_{n + 2} = a_nx_{n + 1} + b_nx_n,\quad n\in {\open Z}_+ $$is Hyers–Ulam stable if and only if the spectrum of the monodromy matrixTq: =Aq−1· · ·A0(i.e. the set of all its eigenvalues) does not intersect the unit circle Γ = {z∈ ℂ: |z| = 1}, i.e.Tqis hyperbolic. Here (and in as follows) we let0.2$$A_n = \left( {\matrix{ 0 & 1 \cr {b_n} & {a_n} \cr } } \right)\quad n\in {\open Z}_+ .$$Secondly we prove that the linear differential equation0.3$${x}^{\prime \prime}(t) = a(t){x}^{\prime}(t) + b(t)x(t),\quad t\in {\open R},$$(wherea(t) andb(t) are ℂ-valued continuous and 1-periodic functions defined on ℝ) is Hyers–Ulam stable if and only ifP(1) is hyperbolic; hereP(t) denotes the solution of the first-order matrix 2-dimensional differential system0.4$${X}^{\prime}(t) = A(t)X(t),\quad t\in {\open R},\quad X(0) = I_2,$$whereI2is the identity matrix of order 2 and0.5$$A(t) = \left( {\matrix{ 0 & 1 \cr {b(t)} & {a(t)} \cr } } \right),\quad t\in {\open R}.$$
Publisher
Cambridge University Press (CUP)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献