Evaluating the dosimetric consequences of MLC leaf positioning errors in dynamic IMRT treatments

Author:

Agarwal Arpita,Rastogi Nikhil,Maria Das KJ,Yoganathan SA,Udayakumar D,Naresh R,Kumar Shaleen

Abstract

AbstractPurposeThe purpose of this study was to evaluate the dosimetric impact of multileaf collimator (MLC) positional errors on dynamic intensity-modulated radiotherapy (IMRT) treatments through planning simulation. Secondly the sensitivity of IMRT MatriXX device for detecting the MLC leaf positional errors was also evaluated.Materials and methodsIn this study five dynamic IMRT plans, each for brain and head–neck (HN), were retrospectively included. An in-house software was used to introduce random errors (uniform distribution between −2·0 and +2·0 mm) and systematic errors [±0·5, ±0·75, ±1·0 and ±2·0 mm (+: open MLC error and −: close MLC error)]. The error-introduced MLC files were imported into the treatment planning system and new dose distributions were calculated. Furthermore, the dose–volume histogram files of all plans were exported to in-house software for equivalent uniform dose (EUD), tumour control probability and normal tissue complication probability calculations. The error-introduced plans were also delivered on LINAC, and the planar fluences were measured by IMRT MatriXX. Further, 3%/3 mm and 2%/2 mm γ-criteria were used for analysis.ResultsIn planning simulation study, the impact of random errors was negligible and ΔEUD was <0·5±0·7%, for both brain and HN. The impact of systematic errors was substantial, and on average, the maximum change in EUD for systematic errors (close 2 mm) was −10·7±3·1% for brain and −15·5±2·6% for HN.ConclusionsIt can be concluded that the acceptable systematic error was 0·4 mm for brain and 0·3 mm for HN. Furthermore, IMRT MatriXX device was able to detect the MLC errors ≥2 mm in HN and >3 mm errors in brain with 2%/2 mm γ-criteria.

Publisher

Cambridge University Press (CUP)

Subject

Oncology,Radiology, Nuclear Medicine and imaging

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3