Evaluation of the accuracy of a six-degree-of-freedom robotic couch using optical surface and cone beam CT images of an SRS QA phantom

Author:

Zhang Q.ORCID,Chen Y.,Fang D.,Iannuzzi C.,Klein E.

Abstract

Abstract Purpose: To assess the accuracy of the Varian PerfectPitch six-degree-of-freedom (6DOF) robotic couch by using a Varian SRS QA phantom. Methods: The stereotactic radiosurgery (SRS) phantom has five tungsten carbide BBs each with 7·5 mm in diameter arranged with the known geometry. Optical surface images and cone beam CT (CBCT) images of the phantom were taken at different pitch, roll and rotation angles. The pitch, roll, and rotation angles were varied from −3 to 3 degrees by inputs from the linac console. A total of 39 Vision RT images with different rotation angle combinations were collected, and the Vision RT software was used to determine the rotation angles and translational shifts from those images. Eight CBCT images at most allowed rotational angles were analysed by in-house software. The software took the coordinates of the voxel of the maximum CT number inside a 7·5-mm sphere surrounding one BB to be the measured position of this BB. Expected BB positions at different rotation angles were determined by multiplying measured BB positions at zero pitch and roll values by a rotation matrix. Applying the rotation matrix to 5 BB positions yielded 15 equations. A linear least square method was used for regression analysis to approximate the solutions of those equations. Results: Of the eight calculations from CBCT images, the maximum rotation angle differences (degree) were 0·10 for pitch, 0·15 for roll and 0·09 for yaw. The maximum translation differences were 0·3 mm in the left–right direction, 0·5 mm in the anterior–posterior direction and 0·4 mm in the superior–inferior direction. Conclusions: The uncertainties of the 6-DOF couch were examined with the methods of optical surface imaging and CBCT imaging of the SRS QA phantom. The rotational errors were less than 0·2 degree, and the isocentre shifts were less than 0·8 mm.

Publisher

Cambridge University Press (CUP)

Subject

Oncology,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3