Optimisation of CT scan parameters to increase the accuracy of gross tumour volume identification in brain radiotherapy

Author:

Estak Kosar,Mohammadzadeh Mohammad,Gharehaghaji Nahideh,Mortezazadeh TohidORCID,Khatyal Rahim,Khezerloo Davood

Abstract

AbstractAim:This study aimed to optimise computed tomography (CT) simulation scan parameters to increase the accuracy for gross tumour volume identification in brain radiotherapy. For this purpose, high-contrast scan protocols were assessed.Materials and methods:A CT accreditation phantom (ACR Gammex 464) was used to optimise brain CT scan parameters on a Toshiba Alexion 16-row multislice CT scanner. Dose, tube voltage, tube current–time and CT dose index (CTDI) were varied to create five image quality enhancement (IQE) protocols. They were assessed in terms of contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and noise level and compared with a standard clinical protocol. Finally, the ability of the selected protocols to identify low-contrast objects was examined based on a subjective method.Results:Among the five IQE protocols, the one with the highest tube current–time product (250 mA) and lowest tube voltage (100 kVp) showed higher CNR, while another with a tube current–time product of 150 mA and a tube voltage of 135 kVp had improved SNR and lower noise level compared to the standard protocol. In contouring low-contrast objects, the protocol with the highest milliampere and lowest peak kilovoltage exhibited the lowest error rate (1%) compared to the standard protocol (25%).Findings:CT image quality should be optimised using the high-dose parameters created in this study to provide better soft tissue contrast. This could lead to an accurate identification of gross tumour volume recognition in the planning of radiotherapy treatment.

Publisher

Cambridge University Press (CUP)

Subject

Oncology,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3