Abstract
Abstract
Introduction:
A small number of studies have confirmed the advantage of generalised equivalent uniform dose (gEUD) optimisation for some standard clinical scenarios; however, its performance with complicated stereotactic treatments is yet to be explored. Therefore, this study compared two planning optimisation methods, gEUD and Physical dose, in stereotactic treatments for several complex anatomical locations.
Methods:
Thirty patients were selected, ten each for sites of brain, lung and spine. Two stereotactic plans were generated for each case using the gEUD objective and Physical objective cost functions. Within each of the three sites, dosimetric indices for conformity, gradient and homogeneity, along with parameters of monitor units and dose–volume histograms (DVHs), were compared for statistical significance. Additionally, patient-specific quality assurance was conducted using portal dosimetry, and the gamma passing rate between the two plans was evaluated.
Results:
Optimisation was better with a gEUD objective as compared with Physical objective, notably sparing critical organs. Overall, the differences in mean values for six critical organs at risk favoured gEUD-based over Physical-based plans (all six 2-tailed p-values were < 0·0002). Furthermore, all differences in mean values for DVH parameters favoured gEUD-based plans: GTVmean, GTVmax, PTVD100V, homogeneity index, gradient index and monitor unit (treatment time) (each 2-tailed p < 0·05).
Conclusions:
gEUD optimisation in stereotactic treatment plans has a clear and general statistical advantage over Physical dose optimisation.
Publisher
Cambridge University Press (CUP)
Subject
Oncology,Radiology, Nuclear Medicine and imaging