Author:
Cheung K. W.,Sang K. K.,Lam H. I.,Chan W. M.,Wu P. M.,Choi H. F.,Ho Y. W.,Law M. Y. Y.
Abstract
AbstractAimThe purpose of this study was to investigate whether significant difference exists on radiation dose delivered to organs at risks in megavoltage computed tomography (MVCT) verification using three predefined scanning modes, namely fine (2 mm), normal (4 mm) and coarse (6 mm). This will provide information for the imaging protocol of tomotherapy for the left breast.Materials and methodsOrgan doses were measured using thermoluminescent dosimeters (TLD-100) placed within a female Rando phantom for MVCT imaging. Kruskal–Wallis test was conducted with p<0·05 to evaluate the significant difference between the three MVCT scanning modes.ResultsStatistically significant difference existed in organ absorbed dose between different scan mode selections (p<0·001). Relative to the normal scan selection (4 mm), the absorbed dose to the organs of interests can be scaled down by 0·7 and scaled up by 2·1 for coarse (6 mm) and fine scans (2 mm) respectively.ConclusionsOptimisation of imaging protocols is of paramount importance to keep the radiation exposure ‘as low as reasonably achievable’. The recommendation of undergoing daily coarse mode for MVCT verification in breast tomotherapy not only mitigates the radiation exposure to normal tissues, but also trims the scan-acquisition time.
Publisher
Cambridge University Press (CUP)
Subject
Oncology,Radiology, Nuclear Medicine and imaging