Slowly varying filtration combustion waves

Author:

Booty M. R.,Matkowsky B. J.

Abstract

We describe the slow evolution of the wave speed and reaction temperature in a model of filtration combustion. In the counterflow configuration of the process, a porous solid matrix is converted to a porous solid product by injecting an oxidizing gas at high pressure into one end of a fresh sample of the solid while igniting it at the other end. The solid and gas react exothermically at high activation energy and, under favourable conditions, a self-sustaining combustion wave travels along the sample, converting reactants to product. Since the reaction rate depends on the gas pressure p in the pores, small gradients in p cause variations in the conditions of combustion, which, in turn, cause inhomogeneities in the physical properties of the product. We determine the slow evolution of the wave speed, the reaction temperature, and the mass flux of the gas downstream of the reaction zone. In the absence of a pressure gradient, there is a branch of steadily propagating solutions which has a fold. For planar disturbances on the slow time scale, we show that the middle part of the branch is unstable, with the change of stability occurring at the turning points of the branch. When the pressure gradient is nonzero, there are no steadily propagating solutions and the wave continually evolves. Conditions on the state of the gas at the inlet are described such that the variation in the wave speed and reaction temperature throughout the process can be minimized.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference14 articles.

1. On Spinning Propagation of Combustion Waves

2. Shkadinsky K. G. , Shkadinskaya G. V. , Matkowsky B. J. & Volpert V. A. 1992(b) Self compaction or expansion in combustion synthesis of porous metals (to appear in Combust. Sci. and Tech.).

3. Shkadinsky K. G. , Shkadinskaya G. V. , Matkowsky B. J. & Volpert V. A. 1992(a) Combustion synthesis of a porous layer (to appear in Combust. Sci. and Tech.).

4. The asymptotic theory of gasless combustion synthesis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A two-dimensional model for large-scale bushfire spread;The Journal of the Australian Mathematical Society. Series B. Applied Mathematics;1997-10

2. Forced forward smolder combustion;Combustion and Flame;1996-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3