Abstract
We consider a diffusive Nicholson's blowflies equation with non-local delay and study the stability of the uniform steady states and the possible Hopf bifurcation. By using the upper- and lower solutions method, the global stability of constant steady states is obtained. We also discuss the local stability via analysis of the characteristic equation. Moreover, for a special kernel, the occurrence of Hopf bifurcation near the steady state solution and the stability of bifurcated periodic solutions are given via the centre manifold theory. Based on laboratory data and our theoretical results, we address the influence of various types of vaccinations in controlling the outbreak of blowflies.
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献