Hele-Shaw flows with free boundaries in a corner or around a wedge Part I: Liquid at the vertex

Author:

RICHARDSON S.

Abstract

Consider a Hele-Shaw cell with the fluid (liquid) confined to an angular region by a solid boundary in the form of two half-lines meeting at an angle απ; if 0 < α < 1 we have flow in a corner, while if 1 < α [les ] 2 we have flow around a wedge. We suppose contact between the fluid and each of the lines forming the solid boundary to be along a single segment emanating from the vertex, so we have liquid at the vertex, and contemplate such a situation that has been produced by injection at a number of points into an initially empty cell. We show that, if we assume the pressure to be constant along the free boundary, the region occupied by the fluid is the image of a semidisc (a domain bounded by a semicircle and its diameter) in the ζ-plane under a conformal map given by a function of the form ζα times a rational function of ζ. The form of this rational function can be written down, and the parameters appearing in it then determined as the solution to a set of algebraic equations. Examples of such flows are given (including one which shows that, in a certain sense, injection can produce a cusp), and the limiting situation in the wedge configuration as one injection point is moved to infinity is also considered.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact solutions describing the injection-driven growth of a doubly-periodic fluid region in a Hele–Shaw cell;IMA Journal of Applied Mathematics;2016-07-11

2. Exact solutions for Hele-Shaw free boundary flows around a flat plate of finite length;The Quarterly Journal of Mechanics and Applied Mathematics;2015-11-24

3. Analytical solutions for Hele-Shaw moving boundary flows in the presence of a circular cylinder;The Quarterly Journal of Mechanics and Applied Mathematics;2015-11-24

4. Classical and Stochastic Laplacian Growth;Advances in Mathematical Fluid Mechanics;2014

5. Generalised Hele-Shaw flow: A Schwarz function approach;European Journal of Applied Mathematics;2011-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3