Abstract
The parabolic equation \[u_t + u_{xxxx} + u_{xx} = - (|u_x|^\alpha)_{xx}, \qquad \alpha>1\], is studied under the boundary conditions $u_x|_{\partial\Omega}=u_{xxx}|_{\partial\Omega}=0$ in a bounded real interval $\Omega$. Solutions from two different regularity classes are considered: It is shown that unique mild solutions exist locally in time for any $\alpha>1$ and initial data $u_0 \in W^{1,q}(\Omega)$ ($q>\alpha$), and that they are global if $\alpha \le \frac{5}{3}$. Furthermore, from a semidiscrete approximation scheme global weak solutions are constructed for $\alpha < \frac{10}{3}$, and for suitable transforms of such solutions the existence of a bounded absorbing set in $L^1(\Omega)$ is proved for $\alpha \in [2,\frac{10}{3})$. The article closes with some numerical examples which do not only document the roughening and coarsening phenomena expected for thin film growth, but also illustrate our results about absorbing sets.
Publisher
Cambridge University Press (CUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献