Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media

Author:

MEIRMANOV A.

Abstract

A system of differential equations describing the joint motion of thermo-elastic porous body and slightly compressible viscous thermofluid occupying pore space is considered. Although the problem is correct in an appropriate functional space, it is very hard to tackle due to the fact that its main differential equations involve non-smooth oscillatory coefficients, both big and small, under the differentiation operators. The rigorous justification under various conditions imposed on physical parameters is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is geometrically periodic. As a result, we derive Biot's system of equations of thermo-poroelasticity, a similar system, consisting of anisotropic Lamé equations for a thermoelastic solid coupled with acoustic equations for a thermofluid, Darcy's system of filtration, or acoustic equations for a thermofluid, according to ratios between physical parameters. The proofs are based on Nguetseng's two-scale convergence method of homogenization in periodic structures.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference14 articles.

1. [14] Sanchez-Palencia E. (1980) Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, Vol. 129, Springer, Berlin.

2. Asymptotic Analysis for a Stiff Variational Problem Arising in Mechanics

3. Generalized solutions to the linearized equations of thermoelastic solid and viscous thermofluid;Meirmanov;Electron. J. Differential Equation.,2007

4. [9] Meirmanov A. Darcy's law for a compressible thermofluid. Submitted to Asymptotic Analysis.

5. Nguetseng’s two-scale convergence method for filtration and seismic acoustic problems in elastic porous media

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3