Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3

Author:

GIACOMELLI LORENZO,GNANN MANUEL V.,OTTO FELIX

Abstract

In one space dimension, we consider source-type (self-similar) solutions to the thin-film equation with vanishing slope at the edge of their support (zero contact-angle condition) in the range of mobility exponents $n\in\left(\frac 3 2,3\right)$. This range contains the physically relevant case n=2 (Navier slip). The existence and (up to a spatial scaling) uniqueness of these solutions has been established in [3] (Bernis, F., Peletier, L. A. & Williams, S. M. (1992) Source type solutions of a fourth-order nonlinear degenerate parabolic equation. Nonlinear Anal. 18, 217–234). It is also shown there that the leading-order expansion near the edge of the support coincides with that of a travelling-wave solution. In this paper we substantially sharpen this result, proving that the higher order correction is analytic with respect to two variables: the first one is just the spatial variable whereas the second one is a (generically irrational, in particular for n=2) power of it, which naturally emerges from a linearisation of the operator around the travelling-wave solution. This result shows that – as opposed to the case of n=1 (Darcy) or to the case of the porous medium equation (the second-order analogue of the thin-film equation) – in this range of mobility exponents, source-type solutions are not smooth at the edge of their support even when the behaviour of the travelling wave is factored off. We expect the same singular behaviour for a generic solution to the thin-film equation near its moving contact line. As a consequence, we expect a (short-time or small-data) well-posedness theory – of which this paper is a natural prerequisite – to be more involved than in the case n=1.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Invariant Manifolds for the Thin Film Equation;Archive for Rational Mechanics and Analysis;2024-03-25

2. Interface Propagation Properties for a Nonlocal Thin-Film Equation;SIAM Journal on Mathematical Analysis;2024-01-05

3. Droplet motion with contact-line friction: long-time asymptotics in complete wetting;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-06

4. Model hierarchies and higher-order discretisation of time-dependent thin-film free boundary problems with dynamic contact angle;Journal of Computational Physics;2022-09

5. Existence and regularity of source-type self-similar solutions for stable thin-film equations;Interfaces and Free Boundaries;2022-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3