On a model for the motion of a contact line on a smooth solid surface

Author:

BILLINGHAM J.

Abstract

In this paper we investigate the model for the motion of a contact line over a smooth solid surface developed by Shikhmurzaev, [24]. We show that the formulation is incomplete as it stands, since the mathematical structure of the model indicates that an additional condition is required at the contact line. Recent work by Bedeaux, [4], provides this missing condition, and we examine the consequences of this for the relationship between the contact angle and contact line speed for Stokes flow, using asymptotic methods to investigate the case of small capillary number, and a boundary integral method to find the solution for general capillary number, which allows us to include the effect of viscous bending. We compare the theory with experimental data from a plunging tape experiment with water/glycerol mixtures of varying viscosities [11]. We find that we are able to obtain a reasonable fit using Shikhmurzaev's model, but that it remains unclear whether the linearized surface thermodynamics that underlies the theory provide an adequate description for the motion of a contact line.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3