Author:
MIGÓRSKI STANISŁAW,OCHAL ANNA,SOFONEA MIRCEA
Abstract
We consider a mathematical model which describes the frictional contact between a piezoelectric body and a foundation. The material behaviour is modelled with a non-linear electro-elastic constitutive law, the contact is bilateral, the process is static and the foundation is assumed to be electrically conductive. Both the friction law and the electrical conductivity condition on the contact surface are described with subdifferential boundary conditions. We derive a variational formulation of the problem which is of the form of a system of two coupled hemi-variational inequalities for the displacement and the electric potential fields, respectively. Then we prove the existence of a weak solution to the model and, under additional assumptions, its uniqueness. The proof is based on an abstract result on operator inclusions in Banach spaces.
Publisher
Cambridge University Press (CUP)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献