Abstract
In this article, we present a simplified means of pricing Asian options using partial differential equations (PDEs). We first provide a concise derivation of the well-known similarity reduction and exact Laplace transform solution. We then analyse the problem afresh as a power series in the volatility-scaled contract duration, with a view to obtaining an asymptotic solution for the low-volatility limit, a limit which presents difficulties in the context of the general Laplace transform solution. The problem is approached anew from the point of view of asymptotic expansions and the results are compared with direct, high precision, inversion of the Laplace transform and with numerical results obtained by V. Linetsky and J. Vecer. Our asymptotic formulae are little more complicated than the standard Black–Scholes formulae and, working to third order in the volatility-scaled expiry, are accurate to at least four significant figures for standard test problems. In the case of zero risk-neutral drift, we have the solution to fifth order and, for practical purposes, the results are effectively exact. We also provide comparisons with the hybrid analytic and finite-difference method of Zhang.
Publisher
Cambridge University Press (CUP)
Reference27 articles.
1. [11] Lewis A. (2002) Asian connections. In: Algorithms, Wilmott Magazine, September 2002, pp. 57–63.
2. [10] Ingersoll J. E. (1987) Theory of Financial Decision Making, Rowman & Littlefield Studies in Financial Economics, Rowman and Littlefield, Savage, Maryland, USA.
3. Perturbation Methods
4. BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献