Author:
CESERI MAURIZIO,STOCKIE JOHN M.
Abstract
We develop a mathematical model for a three-phase free boundary problem in one dimension that involves interactions between gas, water and ice. The dynamics are driven by melting of the ice layer, while the pressurized gas also dissolves within the meltwater. The model incorporates the Stefan condition at the water–ice interface along with Henry's law for dissolution of gas at the gas–water interface. We employ a quasi-steady approximation for the phase temperatures and then derive a series solution for the interface positions. A non-standard feature of the model is an integral free boundary condition that arises from mass conservation owing to changes in gas density at the gas–water interface, which makes the problem non-self-adjoint. We derive a two-scale asymptotic series solution for the dissolved gas concentration, which because of the non-self-adjointness gives rise to a Fourier series expansion in eigenfunctions that do not satisfy the usual orthogonality conditions. Numerical simulations of the original governing equations are used to validate series approximations.
Publisher
Cambridge University Press (CUP)
Reference28 articles.
1. Adaptive Moving Mesh Methods
2. Free boundary problems for parabolic equations. I. Melting of solids.;Friedman;J. Math. Mech.,1959
3. Modeling dynamic marine gas hydrate systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献