Pose estimation in runway end safety area using geometry structure features

Author:

Wang X.,Yu H.,Feng D.

Abstract

ABSTRACTA novel image-based method is presented in this paper to estimate the poses of commercial aircrafts in a runway end safety area. Based on the fact that similar poses of an aircraft will have similar geometry structures, this method first extracts features to describe the structure of an aircraft's fuselage and aerofoil by RANdom Sample Consensus algorithm (RANSAC), and then uses the central moments to obtain the aircrafts’ pose information. Based on the proposed pose information, a two-step feature matching strategy is further designed to identify an aircraft's particular pose. In order to validate the accuracy of the pose estimation and the effectiveness of the proposed algorithm, we construct a pose database of two common aircrafts in Asia. The experiments show that the designed low-dimension features can accurately capture the aircraft's pose information and the proposed algorithm can achieve satisfied matching accuracy.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference26 articles.

1. Iwashita Y. , Kurazume R. , Hasegawa T. and Hara K. Fast alignment of 3D geometrical models and 2D color images using 2D distance maps, Fifth International Conference on 3-D Digital Imaging and Modeling, Ottawa, Canada, 2005, pp 164–171.

2. Distinctive Image Features from Scale-Invariant Keypoints

3. David P. , Daniel D. , DuraiswamI R. and Samet H. Evaluation of the SoftPOSIT model to image registration algorithm, University of Maryland Technical Report CAR-TR-974, 2002.

4. Xu H.L. , Wand S.A. , Zhang X.G. and Hua G.R. Automatic estimation of the object pose for industrial robots, IEEE International Workshop on Imaging Systems and Techniques, Shenzhen, China, 2009, pp 353–358.

5. Dumont G. , Berthiaume F. , Laurent L. St. , Debaque B. and Prévost D. AWARE: A video monitoring library applied to the air traffic control context, The 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, Krakow, Poland, 2013, pp 153–158.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3