Simulation study of wake encounters with straight and deformed vortices

Author:

Vechtel D.

Abstract

ABSTRACTA simulation study was conducted in order to investigate the influence of vortex deformation on wake encounter characteristics. Wake vortices tend to be strongly deformed during the decay process, depending on the atmospheric conditions in terms of turbulence and thermal stratification. For quantification of the influence of vortex deformation, encounters of an aircraft of the ‘Medium’ category behind a generator aircraft of the ‘Heavy’ category were simulated with straight vortices and with realistically deformed vortices derived from large-eddy simulations. All relevant parameters that influence the encounter characteristics, such as encounter angles and positions, were varied within a wide range. In order to cover all kinds of vortex deformation, encounters with different vortex ages from 16-136 seconds were simulated. Hence, all relevant phases during the vortex decay from nearly straight and wavy vortices to vortex rings were considered.The parameter variation study revealed that on average the impact on the encountering aircraft is less with deformed vortices than with straight vortices of comparable strength. Especially with vortex rings, the encountering aircraft is exposed to a much smaller impact. However, the results also show a larger aircraft response during encounters with wavy vortices just prior to vortex linking. The maximum aircraft response with wavy vortices is stronger than with straight vortices of comparable strength. Also, the strongest encounters occur under greater encounter angles with deformed vortices than with straight ones.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3