Author:
Palestrini A.,Gatti D. Delli,Gallegati M.,Greenwald B.
Abstract
Abstract
Experimental evidence shows that human subjects frequently rely on adaptive heuristics to form expectations but their forecasting performance in the lab is not as inadequate as assumed in macroeconomic theory. In this paper, we use an agent-based model (ABM) to show that the average forecasting error is indeed close to zero even in a complex environment if we assume that agents augment the canonical adaptive algorithm with a Belief Correction term which takes into account the previous trend of the variable of interest. We investigate the reasons for this result using a streamlined nonlinear macro-dynamic model that captures the essence of the ABM.
Publisher
Cambridge University Press (CUP)