Abstract
This study presents a method for constructing a sequence of approximate solutions of increasing accuracy to general equilibrium models on nonlocal domains. The method is based on a technique originated from dynamical systems theory. The approximate solutions are constructed employing the Contraction Mapping Theorem and the fact that the solutions to general equilibrium models converge to a steady state. Under certain nonlocal conditions, the convergence of the approximate solutions to the true solution is proved. We also show that the proposed approach can be treated as a rigorous proof of convergence for the extended path algorithm in a class of nonlinear rational expectation models.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics