Modelling the dynamics of complex early design processes: an agent-based approach

Author:

Fernandes João Ventura,Henriques Elsa,Silva ArlindoORCID,Pimentel César

Abstract

Among the different phases of complex design processes, early design is the most dynamic and unpredictable stage since it involves a great deal of uncertainty, concurrency of activity streams, collaborative design iterations, and distributed and adaptive decision-making behaviour in response to both organizational commitments and to the occurrence of unforeseen events. This paper argues that current activity-based modelling approaches have limited ability to capture the dynamics of complex early design processes and explores novel modelling approaches. The development of an Agent Model for Planning and rEsearch of eaRly dEsign (AMPERE) aiming to capture various facets of uncertainty, iteration, collaboration and adaptation is described. The model was developed to tackle early design phases of complex systems, with the ability to deal with changes in requirements coming in and affecting the subsequent design evolution while design tasks are on-going. Initial results from agent-based simulations are presented, showing how the agent-based approach can support industrial organizations evaluating likely early design project performance and understanding complex cause–effect relationships that may affect project outcomes. Early design planning support from the agent model is demonstrated through an investigation to the likely project performance for varying levels of externally driven requirements change.

Publisher

Cambridge University Press (CUP)

Subject

General Engineering,Visual Arts and Performing Arts,Modeling and Simulation

Reference53 articles.

1. Dai, W.  & Drogemuller, R. 1999 Collaborative Framework for Building Design. IEEE SMC’99 Systems, Man and Cybernetics.

2. An agent-based framework for guiding conceptual design of mechanical products;Cao;International Journal of Production Research,2008

3. Discourse model for collaborative design;Case;Computer-Aided Design,1996

4. Evaluation of design process alternatives using signal flow graphs

5. Wynn, D. C. 2007 Model-based approaches to support process improvement in complex product development. PhD, University of Cambridge.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3