Abstract Böhm trees

Author:

CURIEN PIERRE-LOUIS

Abstract

We present a formalism of trees with pointers, called abstract Böhm trees, that provide a suitable abstract framework in which various cut-free proofs or normal terms of several λ-calculus based languages (including PCF and Parigot's λμ-calculus) can be faithfully encoded. A simple abstract machine called the View Abstract Machine (VAM) allows us to compute over abstract Böhm trees. The VAM is closely related to Coquand's interaction sequences and debates. The VAM execution over finite abstract Böhm trees always terminates. We next introduce an abstract notion of type that fits the purpose of guaranteeing that the VAM cannot go into deadlock, i.e., that it always reaches a satisfactory final state. Typed abstract Böhm trees can be turned into a category – more naturally a ‘multi-category’ where the domains of arrows are sets of named objects or records. We then go from the abstract to the concrete by giving examples. Our sets of abstract (typed) Böhm trees are relative to an alphabet and a set of types. By instantiating these two parameter sets appropriately, we recover, successively: (η-long) typed Böhm trees; PCF trees as considered in the game models of Hyland–Ong or of Abramsky–Jagadeesan–Malacaria; a notion of classical Böhm tree due to Herbelin that provides a classical version of PCF trees in the style of λμ-calculus; and, finally, cut-free proofs in Novikov's infinitary propositional logic as investigated by Coquand. In a companion paper, we investigate the operational aspects of (untyped) Böhm trees in more depth.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Game semantics of Martin-Löf type theory;Mathematical Structures in Computer Science;2023-07-31

2. A Compositional Cost Model for the λ-calculus;2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2021-06-29

3. Plays as Resource Terms via Non-idempotent Intersection Types;Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science;2016-07-05

4. Infinitary affine proofs;Mathematical Structures in Computer Science;2015-07-07

5. Game Semantics and Normalization by Evaluation;Lecture Notes in Computer Science;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3