Topological and limit-space subcategories of countably-based equilogical spaces

Author:

MENNI MATÍAS,SIMPSON ALEX

Abstract

There are two main approaches to obtaining ‘topological’ cartesian-closed categories. Under one approach, one restricts to a full subcategory of topological spaces that happens to be cartesian closed – for example, the category of sequential spaces. Under the other, one generalises the notion of space – for example, to Scott's notion of equilogical space. In this paper, we show that the two approaches are equivalent for a large class of objects. We first observe that the category of countably based equilogical spaces has, in a precisely defined sense, a largest full subcategory that can be simultaneously viewed as a full subcategory of topological spaces. In fact, this category turns out to be equivalent to the category of all quotient spaces of countably based topological spaces. We show that the category is bicartesian closed with its structure inherited, on the one hand, from the category of sequential spaces, and, on the other, from the category of equilogical spaces. We also show that the category of countably based equilogical spaces has a larger full subcategory that can be simultaneously viewed as a full subcategory of limit spaces. This full subcategory is locally cartesian closed and the embeddings into limit spaces and countably based equilogical spaces preserve this structure. We observe that it seems essential to go beyond the realm of topological spaces to achieve this result.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limit spaces with approximations;Annals of Pure and Applied Logic;2016-09

2. Computability on random events and variables in a computable probability space;Theoretical Computer Science;2012-11

3. Domain Representable Spaces Defined by Strictly Positive Induction;Logical Methods in Computer Science;2010-08-26

4. Topological objects in the category EQU;Siberian Advances in Mathematics;2010-07

5. Complete Multi-Representations of Sets in a Computable Measure Space;Electronic Proceedings in Theoretical Computer Science;2010-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3