Method of item recognition based on SIFT and SURF

Author:

CHEN WENYU,XIE WENZHI,ZENG RU

Abstract

Item recognition has become a hotspot in the field of computer vision research. SIFT has the advantage of requiring a low amount of information, a fast running speed and high precision, but it requires large data calculations and thus takes a long time to perform the item recognition. In this paper we propose a method of item recognition based on SIFT and SURF that provides a new way to solve the problem of item recognition, and has both feasibility and availability. This technique currently ignores colour information when dealing with colour images, but the evaluation method is capable of taking colour quality characteristics into account so it should be possible to improve the algorithm in the future. Experimental results show that this system of item recognition based on the SURF algorithm gives better matching recognition, is faster and has greater robustness.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,Mathematics (miscellaneous)

Reference9 articles.

1. SVD-matching using SIFT features

2. Lowe D. G. (1999) Object Recognition from Local Scale-Invariant Features. Computer Vision 1999: Proceedings of the International Conference on Computer Vision 1150–1157.

3. Bay H. , Tuytelaars T. and Gool L. V. (2006) SURF: speeded up robust features. Proceedings of the 9th European Conference on Computer Vision 404–417.

4. Ke Y. and Sukthankar R. (2004) PCA-SIFT: a more distinctive representation for local image descriptors. Computer Vision and Pattern Recognition, 2004. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 511–517.

5. A survey of image registration techniques

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3