Impact of Arctic sea ice floe-scale anisotropy on airborne electromagnetic surveys

Author:

Negrel JeanORCID,Divine Dmitry V.ORCID,Gerland SebastianORCID

Abstract

AbstractAirborne electromagnetic induction sensors have demonstrated their extensive capacities to measure sea-ice thickness distributions. However, biases can emerge when comparing these 1-D measurements to a broader 2-D regional scale due to the spatial anisotropy inherent to sea-ice cover. Automated processing of available sea-ice maps could significantly ease the decision on how to set up an optimised flight pattern, which would result in representative ice thickness numbers for the region. In this study, first we investigate the extent to which the sea-ice anisotropy can influence the representativeness of an airborne survey compared to the regional situation. Second, we propose a method to process sea-ice maps prior to flights to help preparing the most representative flight plan possible for the local area. The method is based on automated segmentation of radar satellite images and extensive simulation of flight transects over the image. The spatial analysis of these transects enables for the identification of the most representative survey trajectories for the area. The method was applied for seven different synthetic aperture radar satellite images over Arctic sea ice north of Svalbard. The results indicate that the proposed method improved the representativeness of the airborne survey by identifying the most suitable transect over the ice pack.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3