A Portfolio Optimality Test Based on the First-Order Stochastic Dominance Criterion

Author:

Kopa Miloš,Post Thierry

Abstract

AbstractExisting approaches to testing for the efficiency of a given portfolio make strong parametric assumptions about investor preferences and return distributions. Stochastic dominance-based procedures promise a useful nonparametric alternative. However, these procedures have been limited to considering binary choices. In this paper we take a new approach that considers all diversified portfolios and thereby introduce a new concept of first-order stochastic dominance (FSD) optimality of a given portfolio relative to all possible portfolios. Using our new test, we show that the U.S. stock market portfolio is significantly FSD nonoptimal relative to benchmark portfolios formed on market capitalization and book-to-market equity ratios. Without appealing to parametric assumptions about the return distribution, we conclude that no nonsatiable investor would hold the market portfolio in the face of the attractive premia of small caps and value stocks.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference16 articles.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retrieving almost stochastic Dominance momentum in Taiwan stock market;Pacific-Basin Finance Journal;2024-02

2. Optimal measure preserving derivatives revisited;Mathematical Finance;2023-02-20

3. An inter-temporal CAPM based on First order Stochastic Dominance;European Journal of Operational Research;2022-04

4. Efficiency of Dynamic Portfolio Choices: An Experiment;The Review of Financial Studies;2021-06-18

5. Is the index efficient? A worldwide tour with stochastic dominance;Journal of Financial Markets;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3