Abstract
Abstract
The cross section of options holds great promise for identifying return distributions and risk premia, but estimating dynamic option valuation models with latent state variables is challenging when using large option panels. We propose a particle Markov Chain Monte Carlo framework with a novel filtering approach and illustrate our method by estimating index option pricing models. Estimates of variance risk premiums, variance mean reversion, and higher moments differ from the literature. We show that these differences are due to the composition of the option sample. Restricting the option sample’s maturity dimension has the strongest impact on parameter inference and option fit in these models.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Finance,Accounting
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献