Abstract
AbstractI develop new results for long-horizon predictive regressions with overlapping observations. I show that rather than using autocorrelation robust standard errors, the standard t-statistic can simply be divided by the square root of the forecasting horizon to correct for the effects of the overlap in the data. Further, when the regressors are persistent and endogenous, the long-run ordinary least squares (OLS) estimator suffers from the same problems as the short-run OLS estimator, and it is shown how similar corrections and test procedures as those proposed for the short-run case can also be implemented in the long run. An empirical application to stock return predictability shows that, contrary to many popular beliefs, evidence of predictability does not typically become stronger at longer forecasting horizons.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Finance,Accounting
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献