Abstract
Abstract
This article presents an augmented deep factor model that generates latent factors for cross-sectional asset pricing. The conventional security sorting on firm characteristics for constructing long–short factor portfolio weights is nonlinear modeling, while factors are treated as inputs in linear models. We provide a structural deep-learning framework to generalize the complete mechanism for fitting cross-sectional returns by firm characteristics through generating risk factors (hidden layers). Our model has an economic-guided objective function that minimizes aggregated realized pricing errors. Empirical results on high-dimensional characteristics demonstrate robust asset pricing performance and strong investment improvements by identifying important raw characteristic sources.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Finance,Accounting
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献