Microscale Variability of Atrazine and Chloride Leaching Under Field Conditions

Author:

Chammas Guy A.,Hutson John L.,Hart Jonathan J.,DiTomaso Joseph M.

Abstract

Pesticide leaching experiments using widely spaced sampling sites may not adequately characterize chemical leaching behavior such as nonuniform flow between sampling points. We conducted this study to determine the three-dimensional variability of atrazine and chloride movement within a small volume of soil (2,700 cm1) under field conditions. A 1-m2area of Williamson silt loam (coarse-silty, mixed, mesic, Typic Fragiochrept) was sprayed uniformly with atrazine (1.1 kg ai/ha) and chloride (80 kg/ha). We used the Leaching Estimation and Chemistry Model (LEACHM) to simulate chemical movement. After 6.5 cm of rainfall during a 29-d period, we sampled 36 squares (5 by 5 cm) in the central 30- by 30-cm portion of the treated area at six depth increments (0 to 2, 2 to 5, 5 to 10, 10 to 15, 15 to 21, and 21 to 30 cm) and determined atrazine and Clconcentrations. We recovered 26% of the applied atrazine and 138% of the applied chloride. Low atrazine recovery may have been due to leaching beyond 30 cm and/or degradation while excess chloride recovery is attributed to high background concentrations. Coefficients of variation (CVs) for atrazine significantly increased with depth and ranged from 26 to 353%, while CVs for Clwere independent of depth and ranged from 32 to 66%. Derived atrazine concentration isograms illustrated highly nonuniform herbicide transport. Although LEACHM overestimated atrazine movement in the upper 15 cm, it was fairly accurate in the lower 15 cm. The overall trend in Clflow was adequately predicted, even though the predicted Clconcentrations were underestimated. LEACHM could not accurately predict nonuniform flow or the variability in solute concentrations between points. However, its prediction of the atrazine center of mass (about 4.7 cm) agreed well with the derived isograms. These findings demonstrate that localized nonideal solute transport may be missed in larger sampling schemes and in simulation models.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3