Selection of Herbicide Alternatives Based on Probable Leaching to Groundwater

Author:

Franklin Ralph E.,Quisenberry Virgil L.,Gossett Billy J.,Murdock Edward C.

Abstract

Extension workers are sensing pressure to use soils information and chemical characteristics data to guide farmers in selecting pesticides least prone to leach into groundwater. Our objective was to estimate differences in herbicide migration to groundwater under conditions typical for the Southeast Coastal Plain, and to consider how a farmer might be advised to use such knowledge in selecting herbicides. We used a simple computer code for microcomputers to predict persistence and migration of 17 herbicides through a hypothetical, coarse-textured soil typical of the Southeast Coastal Plain. Appropriate herbicides were selected for several common crop-weed problems, such as sicklepod in soybean and Palmer amaranth in corn. Groundwater was assumed to be 3.15 m below the soil surface. Herbicides selected covered a broad range of half-lives and organic carbon partition coefficients. Only after the first-order degradation rate constant was reduced by a factor of five did predicted soil water concentrations of several herbicides at the groundwater interface reach normal detection limits. Still, predicted concentrations were below the level established for health effects advisory purposes. Due to the large number of uncertainties and the inability to estimate practical benefits, we conclude that data relating to soil and herbicide characteristics cannot be used at this time to override cost effectiveness, efficacy, and other factors normally considered by farmers and Extension professionals in herbicides for weed control.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference42 articles.

1. Syracuse Research Corp., Merrill Lane, Syracuse, NY 13210-4080.

2. Brock T. 1993. Department of Fertilizer and Pesticide Control, Clemson Univ., Clemson, SC 29634. Unpublished data.

3. Computer Models for Fate Assessment During the Registration Process: Data Needs

4. Atrazine Hydrolysis in Soil

5. Dissipation and Leaching of Monuron, Simazine, and Atrazine in Nebraska Soils

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3