Abstract
A class of stationary multivariate point processes is considered in which the events of one of the point processes act as regeneration points for the entire multivariate process. Some important properties of such processes are derived including the joint probability generating function for numbers of events in an interval of fixed length and the asymptotic behaviour of such processes. The general theory is then applied in three bivariate examples. Finally, some simple monotonicity results for stationary and renewal point processes (which are used in the second example) are proved in two appendices.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献