Abstract
Some bounds for the variance of the busy period of an M/G/∞ queue are calculated as functions of parameters of the service-time distribution function. For any type of service-time distribution function, upper and lower bounds are evaluated in terms of the intensity of traffic and the coefficient of variation of the service time. Other lower and upper bounds are derived when the service time is a NBUE, DFR or IMRL random variable. The variance of the busy period is also related to the variance of the number of busy periods that are initiated in (0, t] by renewal arguments.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability