Author:
Anderson W. J.,McDunnough P. M.
Abstract
In this paper, we give an alternative derivation of Kendall's representation for symmetric transition functions which relies on the backward and/or forward integral recursions. The proof uses a lemma concerning approximation by finite sections (which is useful in its own right) and is similar to the original proof for birth and death processes by Lederman and Reuter. Finally, we obtain a general result guaranteeing the existence of representations of transition functions such as those obtained by Pruitt and Iglehart.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献