Author:
Ball Frank,Milne Robin K.,Yeo Geoffrey F.
Abstract
We consider a semi-Markov process with finite state space, partitioned into two classes termed ‘open' and ‘closed'. It is possible to observe only which class the process is in. We show that complete information concerning the aggregated process is contained in an embedded Markov renewal process, whose parameters, moments and equilibrium behaviour are determined. Such processes have found considerable application in stochastic modelling of single ion channels. In that setting there is time interval omission, i.e. brief sojourns in either class failed to be detected. Complete information on the aggregated process incorporating time interval omission is contained in a Markov renewal process, whose properties are derived, obtained from the above Markov renewal process by a further embedding. The embedded Markov renewal framework is natural, and its invariance to time interval omission leads to considerable economy in the derivation of properties of the observed process. The results are specialised to the case when the underlying process is a continuous-time Markov chain.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献